1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
5

Terra tosses a 0.20 kg volleyball straight up at 10.0 m/s. how high does it go?

Physics
1 answer:
Sliva [168]3 years ago
5 0

Answer:

5.1 meters

Explanation:

Terra tosses a 0.20kg volleyball up at at a speed of 10 m/s

The height can be calculated as follows

= v^2/2g

= 10^2/2×9.8

= 100/19.6

= 5.1 meters

Hence the height is 5.1 meters

You might be interested in
A cylindrical resistor element on a circuit board dissipates 1.2 W of power. The resistor is 2 cm long, and has a diameter of 0.
34kurt

Answer:

(a) The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) The fraction of heat dissipated from the top and bottom surfaces is 0.045.

Explanation:

(a) The amount of heat dissipated (Q), measured in joules, by the cylindrical resistor is the power multiplied by operation time (\Delta t), measured in hours. That is:

Q = \dot Q \cdot \Delta t (1)

If we know that \dot Q = 1.2\,W and \Delta t = 86400\,s, then the amount of heat dissipated by the resistor is:

Q = (1.2\,W)\cdot (86400\,s)

Q = 103680\,J

The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux (Q'), measured in watts per square meter, is the heat transfer rate divided by the area of the cylinder (A), measured in square meters:

Q' = \frac{\dot Q}{A} (2)

Q' = \frac{\dot Q}{\frac{\pi}{2}\cdot D^{2}+\pi\cdot D \cdot h } (3)

Where:

D - Diameter, measured in meters.

h - Length, measured in meters.

If we know that \dot Q = 1.2\,W, D = 4\times 10^{-3}\,m and h = 2\times 10^{-2}\,m, the heat flux of the resistor is:

Q' = \frac{1.2\,W}{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2}+\pi\cdot (4\times 10^{-3}\,m)\cdot (2\times 10^{-2}\,m) }

Q' \approx 4340.589\,\frac{W}{m^{2}}

The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) Since heat is uniformly transfered, then the fraction of heat dissipated from the top and bottom surfaces (r), no unit, is the ratio of the top and bottom surfaces to total surface:

r = \frac{\frac{\pi}{2}\cdot D^{2}}{A} (3)

If we know that A \approx 2.765\times 10^{-4}\,m^{2} and D = 4\times 10^{-3}\,m, then the fraction is:

r = \frac{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2} }{2.765\times 10^{-4}\,m^{2}}

r = 0.045

The fraction of heat dissipated from the top and bottom surfaces is 0.045.

7 0
3 years ago
Describe the motion represented by a horizontal line on a distance-time graph.
denpristay [2]

Answer:

hi, this is the answer

Explanation:

A horizontal line on a distance-time graph shows no change in distance, therefore there is no motion.

The object is stationary. ...

Constant speed is motion that occurs with the same ratio of distance to time throughout the entire length of the motion.

pls mark this as the brainliest...

3 0
3 years ago
a pelican flying along a horizontal path drops a fish from a height of 5.4m. the fish travels 8.0m horizontally before it hits t
oksian1 [2.3K]

Answer:

7.0 m/s

Explanation:

6 0
3 years ago
A 120-kg object and a 420-kg object are separated by 3.00 m At what position (other than an infinitely remote one) can the 51.0-
djverab [1.8K]

Answer:

1.045 m from 120 kg

Explanation:

m1 = 120 kg

m2 = 420 kg

m = 51 kg

d = 3 m

Let m is placed at a distance y from 120 kg so that the net force on 51 kg is zero.

By use of the gravitational force

Force on m due to m1 is equal to the force on m due to m2.

\frac{Gm_{1}m}{y^{2}}=\frac{Gm_{2}m}{\left ( d-y \right )^{2}}

\frac{m_{1}}{y^{2}}=\frac{m_{2}}{\left ( d-y \right )^{2}}

\frac{3-y}{y}=\sqrt{\frac{7}{2}}

3 - y = 1.87 y

3 = 2.87 y

y = 1.045 m

Thus, the net force on 51 kg is zero if it is placed at a distance of 1.045 m from 120 kg.

6 0
3 years ago
The fixed hydraulic cylinder C imparts a constant upward velocity v = 2.2 m/s to the collar B, which slips freely on rod OA. Det
Olenka [21]

Answer:

so angular velocity is 7.13128 sec−1

Explanation:

velocity v = 2.2 m/s

displacement s = 220 mm = 0.220 m

distance d = 510 mm = 0.510 m

to find out

angular velocity

solution

we know that

angular velocity will be velocity ( v)  / (displacement²  +  distance²)   .....1

now put all these value in equation 1 and we get angular velocity i.e.

angular velocity =  velocity ( v)  / (displacement²  +  distance²)

angular velocity = 2.2  / (0.22²  +  0.51²)

angular velocity = 2.2 / 0.3085

angular velocity = 7.13128

so angular velocity is 7.13128 sec−1

6 0
3 years ago
Other questions:
  • Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, t
    5·1 answer
  • How can you convert Saturn radii to kilometers?
    10·1 answer
  • Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-r
    15·2 answers
  • At 8:00 am, the temperature in the earth science room was measured to be 62 degrees Fahrenheit. By 12:00 pm, the temperature had
    7·1 answer
  • A bicyclist travels the first 1600 m of a trip at an average speed of 8 m/s, travels the next 1200 m in 90 s and spends the last
    5·1 answer
  • A 12.0 g bullet was fired horizontally into a 1 kg block of wood. The bullet initially had a speed of 250 m/s. The block of wood
    6·2 answers
  • A bottle of a certain type of salad dressing can be considered to be a mixture of olive oil and vinegar. The oil has a density o
    14·1 answer
  • Calculate the effective value of g, the acceleration of gravity, at 6700 m , above the Earth's surface. g
    11·1 answer
  • Using the equation for the final velocity in terms of masses and initial velocity of the gliders for a perfectly inelastic colli
    5·1 answer
  • When the motion of one or both of the particles is at an angle to the line of impact, the impact is said to be ________
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!