Answer:
When the temperature decreases the particals start to slow down.
If the force and the motion are along the same direction (like it is here) then work is force*distance. The time doesn't come into play until you want the power used. So here
W=9.0*3.0=27J
<h3><u>Answer;</u></h3>
100 times
<h3><u>Explanation;</u></h3>
- The largest stars are 100 times the mass of the Sun.
- <u>The giant stars are about 10 to 100 times the radius of the sun</u>, which means they are 100 times brighter than the sun.
- <em><u>The largest known star in terms of mass and brightness is known as the Pistol Star. It is believed to be 100 times as massive as our Sun, and 10,000,000 times as bright.</u></em>
Answer:
Option B. 6.25 J/S
Explanation:
Data obtained from the question include:
t (time) = 2secs
F (force) = 50N
d (distance) = 0.25m
P (power) =?
The power can be obtained by using the formula P = workdone/time.
P = workdone / time
P = (50 x 0.25)/ 2
P = 6.25J/s
Answer:
Explanation:
Given
object of mass m is suspended from spring and set in oscillation with time Period T
We know Time period of a mass in oscillation is given by

where k=spring constant
When mass m is replaced by a mass of 2 m time period is given by



i.e. New time period becomes
times of previous one