Dududuchcucu I h y y y y y red t e. Drrr. Erred tfyryt ty
Answer:
![[H^{+}] = 0.761 \frac{mol}{L}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%200.761%20%5Cfrac%7Bmol%7D%7BL%7D)
![[OH^{-}]=1.33X10^{-14}\frac{mol}{L}](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D1.33X10%5E%7B-14%7D%5Cfrac%7Bmol%7D%7BL%7D)

Explanation:
HCl and HNO₃ both dissociate completely in water. A simple method is to determine the number of moles of proton from both these acids and dividing it by the total volume of solution.
. V_{HCl}(L) \\ n_{H^{+} } from HNO_{3} = [HNO_{3}](\frac{mol}{L}). V_{HNO_{3}}(L)](https://tex.z-dn.net/?f=n_%7BH%5E%7B%2B%7D%20%7D%20from%20HCl%20%3D%20%5BHCl%5D%28%5Cfrac%7Bmol%7D%7BL%7D%29.%20V_%7BHCl%7D%28L%29%20%20%5C%5C%20n_%7BH%5E%7B%2B%7D%20%7D%20from%20HNO_%7B3%7D%20%20%3D%20%5BHNO_%7B3%7D%5D%28%5Cfrac%7Bmol%7D%7BL%7D%29.%20V_%7BHNO_%7B3%7D%7D%28L%29)
Here, n is the number of moles and V is the volume. From the given data moles can be calculated as follows






For molar concentration of hydrogen ions:
![[H^{+}] = \frac{n_{H^{+}}(mol)}{V(L)}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%20%3D%20%5Cfrac%7Bn_%7BH%5E%7B%2B%7D%7D%28mol%29%7D%7BV%28L%29%7D)
![[H^{+}] = \frac{0.761}{1.00}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B0.761%7D%7B1.00%7D)
![[H^{+}] = 0.761 \frac{mol}{L}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%200.761%20%5Cfrac%7Bmol%7D%7BL%7D)
From dissociation of water (Kw = 1.01 X 10⁻¹⁴ at 25°C) [OH⁻] can be determined as follows
![K_{w} = [H^{+} ][OH^{-} ]](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%20%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%20%5D)
![[OH^{-}]=\frac{Kw}{[H^{+}] }](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D%5Cfrac%7BKw%7D%7B%5BH%5E%7B%2B%7D%5D%20%7D)
![[OH^{-}]=\frac{1.01X10-^{-14}}{0.761 }](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D%5Cfrac%7B1.01X10-%5E%7B-14%7D%7D%7B0.761%20%7D)
![[OH^{-}]=1.33X10^{-14}\frac{mol}{L}](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D1.33X10%5E%7B-14%7D%5Cfrac%7Bmol%7D%7BL%7D)
The pH of the solution can be measured by the following formula:
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


A chemical property is any of a material's properties that becomes transformed during and after a chemical reaction occurs. Some common examples of chemical properties are; flammable products, toxicity, and heat of combustion.
Hope I could help! :)
The phosphorylation of fructose 6-phosphate to fructose-1,6-bisphosphate is the committed step in glycolysis because. it is the rate-limiting step
<h3>What is
phosphorylation?</h3>
The first step in the metabolism of carbohydrates is frequently their phosphorylation. Because the phosphate group stops the molecules from migrating back across the transporter, phosphorylation enables cells to store carbohydrates. Glucose phosphorylation is a crucial step in the metabolism of sugar. In the first phase of glycolysis, D-glucose is converted to D-glucose-6-phosphate using the chemical equation D-glucose + ATP D-glucose-6-phosphate + ADP G° = 16.7 kJ/mol (° signifies measurement under standard conditions).
The rate-limiting stage in the liver's metabolism of glucose is the initial rate of phosphorylation of glucose (ATP-D-glucose 6-phosphotransferase) and non-specific hexokinase. Hepatic cells are freely permeable to glucose (ATP-D-hexose 6-phosphotransferase).
encouraging certain glucose transporters to translocate to the cell membrane.
To learn more about phosphorylation from the given link:
brainly.com/question/2138188
#SPJ4