Answer:
Specific gravity is the density of asubstance divided by the density of water. Since (at standard temperature and pressure) water has a density of 1 gram/cm3, and since all of the units cancel, specific gravity is usually very close to the same value as density(but without any units).
Answer:
1.25 gram of cesium-137 will remain.
Explanation:
Given data:
Half life of cesium-137 = 30 year
Mass of cesium-137 = 5.0 g
Mass remain after 60 years = ?
Solution:
Number of half lives passed = Time elapsed / half life
Number of half lives passed = 60 year / 30 year
Number of half lives passed = 2
At time zero = 5.0 g
At first half life = 5.0 g/2 = 2.5 g
At 2nd half life = 2.5 g/ 2 = 1.25 g
Thus. 1.25 gram of cesium-137 will remain.
The answer you're looking for is: a wave.
The idea here is that you need to figure out how many moles of magnesium chloride,
MgCl
2
, you need to have in the target solution, then use this value to determine what volume of the stock solution would contain this many moles.
As you know, molarity is defined as the number of moles of solute, which in your case is magnesium chloride, divided by liters of solution.
c
=
n
V
So, how many moles of magnesium chloride must be present in the target solution?
c
=
n
V
⇒
n
=
c
⋅
V
n
=
0.158 M
⋅
250.0
⋅
10
−
3
L
=
0.0395 moles MgCl
2
Now determine what volume of the target solution would contain this many moles of magnesium chloride
c
=
n
V
⇒
V
=
n
c
V
=
0.0395
moles
3.15
moles
L
=
0.01254 L
Rounded to three sig figs and expressed in mililiters, the volume will be
V
=
12.5 mL
So, to prepare your target solution, use a
12.5-mL
sample of the stock solution and add enough water to make the volume of the total solution equal to
250.0 mL
.
This is equivalent to diluting the
12.5-mL
sample of the stock solution by a dilution factor of
20
.