The empirical formula is C₇H₆O₂.
Assume that you have 100 g of the compound.
Then you have 68.84 g C and 4.962 g H.
Mass of O = (100 – 68.84 – 4.962) g = 26.20 g O.
Now, we must convert these masses to moles and find their ratios.
From here on, I like to summarize the calculations in a table.
<u>Element</u> <u>Mass/g</u> <u>Moles</u> <u>Ratio</u> <u> ×2</u> <u>Integers</u>
C 68.84 5.732 3.501 7.001 7
H 4.962 4.923 3.006 6.012 6
O 26.20 1.638 1 2 2
The empirical formula is C₇H₆O₂.
Answer:
in the simple cubic unit cell, the centers of ____Eight________ identical particles define the ____corners________ of a cube. The particles do touch along the cube's _____edges _______ but do not touch along the cube's ___ diagonally_________ or through the center. There is/are __eight__________ particle per unit cell and the coordination number is _____six_______ .
Answer:
1. Rubidium metal reacts very rapidly with water to form a colorless basic solution of rubidium hydroxide (RbOH) and hydrogen gas (H2).
2. Rubidium sinks because it is less dense than water. It reacts violently and immediately, with everything leaving the container. Rubidium hydroxide solution and hydrogen are formed.
Answer:
5.25 moles.
Explanation:
The decomposition reaction of NaN₃ is as follows :

We need to find how many grams of N₂ produced in the process.
From the above balanced chemical reaction, we conclude that the ratio of moles of sodium azide and nitrogen gas are 2 : 3.
2 moles of sodium azide decomposes to give 3 moles of nitrogen gas. So,
3.5 moles of sodium azide decomposes to give
moles of nitrogen gas.
Hence, the number of moles produced is 5.25 moles.