The principle states that the lowest-energy orbitals are filled first, followed ... electron configuration The arrangement of electrons in an atom, molecule, or other ... and two valence electrons (electrons in the outer shell), respectively; because of this, ... mechanics, a certain energy is associated with each electron configuration.
Use the formula
first step:
Use the formula
molarity= mole/liter
change ml to l
plug in data
to get .1=mole/.25 or .1M*.25liter
which =.025 moles
then divide .025 moles by two because there are two OH in Sr(OH)2
then multiply that by 265.76 (the molar mass of water)
.0125*265.76
which is 3.32grams this is your answer
Answer:
they both gain one electron
Explanation:
they are both halogens and they each have one unpaired electron so that unpaired electron join together to make them form a bond
<u>Answer:</u>
Exothermic Reaction are those reaction, in which energy is released while in endothermic reaction are those, in which energy is absorbed.
<u>Explanation:</u>
First Reaction:
As in this reaction, energy is released
½H2(g) + ½I2(g) → HI(g), ΔH = +6.2 kcal/mole
so it is <em>exothermic reaction</em>
Second reaction:
As in this reaction, energy is absorbed
21.0 kcal/mole + C(s) + 2S(s) → CS2(l)
so it is <em>endothermic reactions</em>.
Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.