If two brown eyed people had a blue eyed baby you can deduced that D. The gene for brown eyes is recessive. Hope this helps
Since the temperature of the gas remains constant in the process, we can use Boyle's law, which states that for a gas transformation at constant temperature, the product between the gas pressure and its volume is constant:

which can also be rewritten as

(1)
where the labels 1 and 2 mark the initial and final conditions of the gas.
In our problem,

,

and

, so the final pressure of the gas can be found by re-arranging eq.(1):

Therefore the correct answer is
<span>1. 0.75 atm</span>
The cat has two directions of motions:
The horizontal motion = Dx = 2.2 m
The vertical motion = Dy = -1.3 m (negative sign indicates that the cat is falling)
a = 9.8 m/sec^2
Vy = zero (since you are not moving up)
From the laws of motion:
<span>Dy = Vyt + 0.5ayt^2
</span>-1.3 = 0(t) + 0.5(-9.8)t^2
<span>t = 0.52s
</span>
Then, again using the laws of motion (but for the horizontal direction this time)
Dx = Vxt
<span>2.2 = Vx0.52 </span>
<span>Vx = 2.2/0.52 </span>
<span>= 4.23 m/s
</span>
<span>Therefore the cat's speed when it slid off the table is 4.23 m/s horizontally.</span>
Answer:
Flux is 21 Nm^2/C.
Explanation:
Electric field, E = 6 N/C along X axis
Electric filed vector, E = 6 i N/C
Area, A = 4 square meter
Area vector

The flux is given by

Answer: The motion of the object will remain the same
Explanation: