According to the net force, the acceleration of the book is 16.47 m/s².
We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as
∑F = m . a
where F is force, m is mass and a is acceleration
From the question above, we know that
m = 3 kg
g = 9.8 m/s²
F1 = 20 N
Find the net force
∑F = F1 + W
∑F = 20 + m . g
∑F = 20 + 3 . 9.8
∑F = 20 + 29.4
∑F = 49.4 N
Find the acceleration
∑F = m . a
49.4 = 3 . a
a = 16.47 m/s²
Find more on force at: brainly.com/question/25239010
#SPJ4
Answer:
Explanation:
weight on moon = 1/6* weight on earth
69.3=1/6*weight on earth
weight on earth = 69.3*6
weight on earth = 415.8 N
The inner planets are the planets before the asteroid belt. They are also closer to the Sun. The outer planets are the ones after the asteroid belt. <span />
Answer:
<h2>2 meters</h2>
Explanation:
<h2>Wavelength = Speed/Frequency </h2><h2>1000 m/s ÷ 500 hz </h2><h2>2 m</h2><h2>hz = s</h2><h2>Hopes this helps. Mark as brainlest plz!</h2>
Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):
