1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
3 years ago
5

Need asap!

Physics
1 answer:
Genrish500 [490]3 years ago
7 0

Answer:

3.0 A Is the correct option

Explanation:

I = V / R

I = 12/ 4

= 3

You might be interested in
Why do we need to put Airplane mode?
Serga [27]

Answer:

if we ever ride a airplane we dont mess up its signals and crash ,and its easier to ignore calls and texts

Explanation:

6 0
3 years ago
Read 2 more answers
Gary saved dimes and nickels at a ratio of 5:7. Then, he saved 20% more dimes and 3 times the original number of nickels. If he
TiliK225 [7]

Answer:

i think 53 or 56

Explanation:

cause i cross multiplied and got that

8 0
3 years ago
Read 2 more answers
Solve this physics for me <br>please with steps<br>​
Mars2501 [29]

Answer:

The answers are located in each of the explanations showed below

Explanation:

a)

(i) Surface Tension: The tensile force that causes this tension acts parallel to the surface and is due to the forces of attraction between the molecules of the liquid. The magnitude of this force per unit of length is called surface tension.

σ = F/l [N/m]

where:

F = force [N]

l = length [m]

σ = Surface Tension [N/m]

(ii) Frequency is the number of repetitions per unit of time of any periodic event.

f = 1/T [1/s] or [s^-1] or [Hz]

where:

T = period [s] or [seconds]

f = frecuency [Hz] or [hertz]

(iii) Each of the units will be shown for each variable

v = velocity [m/s]

a = accelertion [m/s^2]

s = displacement [m]

[\frac{m}{s} ]^{2} =[\frac{m}{s} ]^{2} + 2* [\frac{m}{s^{2} } ]*[m]\\

[\frac{m^2}{s^2} ] =[\frac{m^2}{s^2} ] +  [\frac{m^{2} }{s^{2} } ]

[\frac{m^2}{s^2} ]

b) To find the velocity we must derivate the function X with respect to t because this derivate will give us the equation for the velocity, it means:

v=\frac{dx}{dt} \\v = 0.75*2*t+5*t

(i) X = 0.75*t^{2} +5*t+1\\X = 0.75*(4)^{2} +5*(4)+1\\X = 33 [m]

ii) replacing in the derivated equation.

v=1.5*(4)+5\\v=11[m/s]

iii) the average velocity is defined by the expresion v = x/t

v = \frac{x-x_{0} }{t-t_{0} } \\

x_{0}=0.75(2)^{2}+5(2)+1 \\ x_{0}=14[m]\\x=0.75(7)^{2}+5(7)+1\\x=72.75[m]\\t = 7 [s]t0= 2[s]Now replacing:[tex]v_{prom} = \frac{72.75-14}{7-2} \\v_{prom} = 11.75 [m/s]

2

a) Pascal's principle or Pascal's law, where the pressure exerted on an incompressible fluid and in balance within a container of indeformable walls is transmitted with equal intensity in all directions and at all points of the fluid.

Therefore:

P1 = pressure at point 1.

P2 = pressure at point 2.

P1 = F1/A1

P2= F2/A2

\frac{F_{1} }{A_{1} }=\frac{F_{2}}{A_{2} }  \\F_{1}=A_{1}*(\frac{F_{2}}{A_{2} })

b) One of the applications of the surface tension is the <u>capillarity</u> this is a property of liquids that depends on their surface tension (which, in turn, depends on the cohesion or intermolecular force of the liquid), which gives them the ability to climb or descend through a capillary tube.

Other examples of surface tension:

The mosquitoes that can sit on the water.

A clip on the water.

Some leaves that remain floating on the surface.

Some soaps and detergents on the water.

5 0
3 years ago
The magnetic field produced by a long straight current-carrying wire is
alexdok [17]

Answer:

proportional to the current in the wire and inversely proportional to the distance from the wire.

Explanation:

The magnetic field produced by a long, straight current-carrying wire is given by:

B=\frac{\mu_0 I}{2 \pi r}

where

\mu_0 is the vacuum permeability

I is the current intensity in the wire

r is the distance from the wire

From the formula, we notice that:

- The magnitude of the magnetic field is directly proportional to I, the current

- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r

Therefore, correct option is

proportional to the current in the wire and inversely proportional to the distance from the wire.

8 0
3 years ago
You're at rest in a hammock when a hungry mosquito sees an opportunity for lunch. A mild 2 m/s breeze is blowing. If the mosquit
valentinak56 [21]

Answer:

A) against the breeze at 2 m/s

Explanation:

Given that air is blowing at 2 m/s.An a mosquito eat lunch.If mosquito want to eat lunch he have to move opposite to the direction of air because air is blowing at 2 m/s.So we can say that mosquito have to move against the air.

But in we have to protect our self from mosquito because if any mosquito bite us then it may lead to fever .So the protection is very important from mosquito .

Therefore the answer is --

A

6 0
3 years ago
Other questions:
  • A. A ball is thrown directly up with an initial speed of 4.00 m/s at y = 0. What is the maximum height h that it achieves, and w
    11·1 answer
  • A long-jumper jumps at a speed of 9.65 m/s at an angle of 21.00 to the ground, 2.00 m before the edge of a ditch which is 1.50 m
    10·1 answer
  • A rock at rest falls off a tall cliff and hits the valley below after 3.5s. What is the rocks velocity as it hits the ground
    12·2 answers
  • Electric potential is associated with both electric fields due to static charges and induced electric fields. Electric potential
    9·1 answer
  • PLEASE HELP:
    13·1 answer
  • The energy delivered to the resistive coil is dissipated as heat at a rate equal to the power input of the circuit. However, not
    13·1 answer
  • The strength of the pull of gravity depends on _______. (1 point) speed and distance mass and distance mass and speed speed and
    9·1 answer
  • A 10-kg rock falls from a height of 8-m above the ground. What is the kinetic energy of the rock just before it hits the ground?
    15·1 answer
  • Differentiate between moments and momentum​
    8·1 answer
  • A diver jumps from a high platform and stays in the air for 1 second. How high was the platform?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!