Answer:
<u />
<u />
Explanation:
From the question we are told that:
The Electric field of strength direction =Right
The Velocity of The First Electron=V_0
The Velocity of The Second Electron=V_0
Therefore

Generally, the equation for the Horizontal Displacement of electron is mathematically given by

Where
Acceleration is given as

And
Time

Therefore horizontal displacement towards the left is

<u />
<u />
Women generally have a lower centre of gravity than men, contributing to greater stability. Men generally have more muscle mass in their upper bodies,
Explanation:
F = 20N m= m1 a=10m/s²
m=m2 a=5m/s²
F = ma
<u>for the first one</u><u>:</u><u> </u>
f=m1 × a
20 = m1 ×10
20=10m1
m1=20/10
m1=2
<u>for</u><u> </u><u>the</u><u> </u><u>second</u><u> </u><u>one</u><u> </u><u>:</u>
f=m2×a
20=m2×5
m2= 20/5
m2= 4
since F=ma
F=(m1+m2) ×a
F =(4+2)×a
F =6×a
F=20(from the question above )
20=6×a
a=20/6
a=3.33
Answer:
The final speed of the crate is 12.07 m/s.
Explanation:
For the first 10.0 meters, the only force acting on the crate is 225 N, so we can calculate the acceleration as follows:


Now, we can calculate the final speed of the crate at the end of 10.0 m:
For the next 10.5 meters we have frictional force:


So, the acceleration is:
The final speed of the crate at the end of 10.0 m will be the initial speed of the following 10.5 meters, so:
Therefore, the final speed of the crate after being pulled these 20.5 meters is 12.07 m/s.
I hope it helps you!