Answer: No, a<span>t high pressures, volume of a real gas does not compare with the volume of an ideal gas under the same conditions.
Reason:
For an ideal gas, there should not be any intermolecular forces of interaction. However, for real gases there are intermolecular forces of interaction like dipole-dipole and dipole-induced dipole. Further, at high pressures, molecules are close by. Hence, extend of these intermolecular forces is expected to be high. This results in decreases in volume of real gas. Thus, </span>volume of a real gas does not compare with the volume of an ideal gas under the same conditions.
Answer:
Because they are different oxides.
Explanation:
In both processes they are involve Iron Oxides, but in the case of Ellingham diagrams, it is consider the Iron in combination with oxygen to form FeO, so the melting point is around 1600 ºC. In the case of blast furnace, the Fe that is present in the ores, are primary the hematite (Fe2O3) and the magnetite (Fe3O4).
Answer:
there is no d electron that can be promoted via the absorption of visible light
Explanation:
One of the properties of transition elements is the possession of incompletely filled d orbitals. This property accounts for their unique colours.
The colours of transition metal compounds stem from d-d transition of electrons due to the presence of vacant d orbitals of appropriate energy to which electrons could be promoted.
For elements whose atoms have a d10 configuration, such vacant orbitals does not exist hence their compounds are not colored.
Sometimes, the colour of transition metal compounds stem from ligand to metal charge transfer(LMCT) for instance in KMnO4.
They or on the southern hysteric watch it on youtube (latitude and longitude song 1 direction remix by the history teachers)