Answer:

Explanation:
Hello there!
In this case, according to the described chemical reaction, Cl2 replaces iodine in NaI in order to produce I2 and NaCl:

It is possible to realize how chlorine replaces iodine in agreement with the single displacement reaction. Moreover, since chlorine and iodine atoms are not correctly balanced, we add a 2 in front of both NaI and NaCl in order to do so:

Best regards!
There are 3 equations involved in manufacturing Nitric Acid from Ammonia.
First the ammonia is oxidized:
4NH3 + 5O2 = 4NO + 6H2O
Then for the absorption of the nitrogen oxides.
2NO + O2 = N2O4
Lastly, the N2O4 is further oxidized into Nitric acid.
3N2O4 + 2H2O = 4HNO3 + 2NO
Then run stoichiometry through these equations.
The first equation produces roughly 271,722,938 grams of NO
The second equation produces roughly 416,606,944 grams of N2O4
The last equation produces roughly 380,412,294 grams of HNO3 (nitric acid)
Convert the exact number back into tons, and your answer is: 419.332775 tons.
Rounded, I'm going to say that's 419.33 tons.
Hope this helps! :)
Also, it seems that commercially, Nitric Acid is commonly made by bubbling NO2 into water, rather than using ammonia.
Answer: the essential parts of a flower
Explanation:
are engaged with seed creation. In the event that a blossom contains both useful stamens and pistils, it is known as an ideal bloom, regardless of whether it doesn't contain petals and sepals. On the off chance that either stamens or pistils are deficient with regards to, the blossom is called imperfect.
Safety glasses should be worn any time you are doing an experiment, especially one that involves chemicals or chemical reactions. They prevent chemicals or other materials from getting on or in your eye, and can prevent anything from mild discomfort to permanent blindness.
Some pairs of safety glasses have magnifying glasses on them, similar to bifocals. They can be used to more carefully examine something in an experiment.
An increase in temperature will increase the average kinetic energy of the molecules. As the particles move faster, they will likely hit the edge of the container more often.