Answer:
Fluid fricton goes to Static friction and sliding friction goes to rolling friction
Explanation:
Answer:
a) 200A
b) 10.2V
c) 2.04kW
d)
I=80A
V=4.08V
P=0.326kW
Explanation:
Here we have a circuit of one power source and two resistors in series, the first question is asking for the current, so according to Ohm's Law:

Where R is the equivalent resistance of the resistors in series
![R=0.0510+0.0090=0.0600[ohm]](https://tex.z-dn.net/?f=R%3D0.0510%2B0.0090%3D0.0600%5Bohm%5D)

To calculate the voltage dropped by the motor we have to apply the voltage divider rule:

The power dissipated supplied to the motor is given by:

now solving adding a 0.0900 ohm resistor:



Answer:



Explanation:
= Uncertainty in position = 1.9 m
= Uncertainty in momentum
h = Planck's constant = 
m = Mass of object
From Heisenberg's uncertainty principle we know

The minimum uncertainty in the momentum of the object is 
Golf ball minimum uncertainty in the momentum of the object

Uncertainty in velocity is given by

The minimum uncertainty in the object's velocity is 
Electron


The minimum uncertainty in the object's velocity is
.
The work done by force on a spring hung from the ceiling will be 1.67 J
Any two things with mass are drawn together by the gravitational pull. We refer to the gravitational force as attractive because it consistently seeks to draw masses together rather than pushing them apart.
Given that a spring is hung from the ceiling with a 2.0-kg mass suspended hung from the spring extends it by 6.0 cm and a downward external force applied to the mass extends the spring an additional 10 cm.
We need to find the work done by the force
Given mass is of 2 kg
So let,
F = 2 kg
x = 0.1 m
Stiffness of spring = k = F/x
k = 20/0.006 = 333 n/m
Now the formula to find the work done by force will be as follow:
Workdone = W = 0.5kx²
W = 0.5 x 333 x 0.1²
W = 1.67 J
Hence the work done by force on a spring hung from the ceiling will be 1.67 J
Learn more about force here:
brainly.com/question/12970081
#SPJ4
Disclaimer: I just answered this, here is the answer again!
*Used copy paste from my own answer as it is a repeated question, no copied work*
3. A
The relation between V and I at constant R is;V=IR, so it is a direct linear relation.
4. A
This is another direct linear relation as P=IV.
5. D
The relation between P, R, and V is P=, so P is inversely proportional to R.
6.B
The relation between P,I, and R is , so P is directly proportional to the square of I.
Please note that y:x relations are always straight lines while relations are parabolic lines.
Hope this helps!