The speed stops as it hits the girls hand but speed reduces as it reaches her hand and increases at the beginning of the movement
Answer:
mass = 36.92 kg
Explanation:
We have given the torque 
Radius of the disk r = 0.50 m
Angular acceleration 
We know that torque is given by
here I is moment of inertia and
is angular acceleration
So 

Moment of inertia is given by 

m = 36.92 kg
The given answer is not matched with this answer but after calculation i got m =36.92 kg
From Literature:
The amount of energy in the photons is given by this equation:
E = hf
where E = energy
h = Planck's constant = 6.63 * 10^-34 Joule seconds
f = frequency of the light, Hz
Given:
E= 3.00 eV and Planck's constant
To solve for the frequency, E = 3.00 eV
1 electronvolt = 1.60218 x 10^-19 Joules
3 * 1.60218 x 10^-19 Joules = 6.63 * 10^-34 Joule seconds * f
f = 7.25 x 10^14 /second or hertz
Therefore, the threshold frequency of the material is 7.25 x 10^14 Hertz.
Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees
Answer:
2. A force of 50 N is applied to the object for a distance of 2.0 m. Assume that object(the mass of the object is 3kg)
was at rest at the beginning, what speed did it achieved because of the work done on it? (Hint:
Calculate the works performed by the force first.)
I figured that is 8.2m/S,I am just not sure can anyone help me i much appreciate it.