Answer:
C
Explanation:
a variable does that dose not depend on that of another
Answer:
density of animal populations
Hope this helped
Explanation:
In order to go from mass of magnesium to atoms of magnesium, we have to do two things:
Convert mass of Mg to moles of Mg using the molar mass of Mg as a conversion factor
Convert moles of Mg to atoms of Mg using Avogadro's number (6.02×1023) as a conversion factor
Step 1:
Before we start, I should note that the molar mass of Mg is 24.31gmol. We can go from mass to moles using dimensional analysis. The key to dimensional analysis is understanding that the units that you don't need any more cancel out, leaving the units that are desired:
48.60g
×1mol24.31g
=2.00mol
Step 2:
We'll use this relationship:
www.sprinklernewz.uswww.sprinklernewz.us
Using the moles of Mg that we just obtained, we can use Avogrado's number to perform dimensional analysis in order to cancel out units of mol to end up with atoms of Mg:
2.00mol
×6.02×1023atoms1mol
=1.204×1024atoms
Thus, 48.60g of Mg is equivalent to 1.204×1024atoms
Hope this helped :)
<h3>
Answer:</h3>
51.93 L
<h3>
Explanation:</h3>
From the question we are given the following components of an ideal gas;
Number of moles = 21.5 mol
Pressure, P = 9.65 atm
Temperature, T = 10.90°C, but K= °C + 273.15
=284.05 k
We are required to calculate the volume of the ideal gas.
We are going to use the ideal gas equation which is given by;
PV = nRT, where P, V, T and n are the pressure, volume, temperature and moles of the ideal gas respectively. R is the ideal gas constant, 0.082057 L.atm/mol.K
To get the volume, we rearrange the formula to get;
V = nRT ÷ P
= (21.5 × 0.082057 × 284.05 K) ÷ 9.65 atm
= 51.93 L
Thus, the volume of the ideal gas is 51.93 L