Answer:
Step-by-step explanation:
Garrett achieves a field goal is independent of each kick. Hence X no of kicks is binomial with p = 0.83, and q =0.17
No of trials 3
Hence X can take values as 0 ,1,2,3 and
, r=0,1,2,3
Using the above we obtain prob distribution as
X 0 1 2 3
P(X) 0.0049 0.0720 0.3513 0.5718
P(X>=2) =P(X=2,3,4) =0.9231
-----------------------------------------
2) Z value for company A =
Z value for company B =
From z value probablility is more for company A as
P(Z>-2.22) >P(Z>2.89)
Yearly salary would be 240,000 for 5,000 and 48,000 for 1,000 a week
Answer:
simplified 10k-1a-10
Step-by-step explanation:
Simplified
9.4061,
9.07,
9.007,
9.4
Because ones are equal for all numbers, we are going to begin to compare from the second digits (tenths).
Greater :
9.4061 and 9.4.
Greatest is this group is 9.4061, then will go 9.4.
Smaller :
9.07 and 9.007
Greatest in this group is 9.07, and then will go 9.007.
So, from greatest to smallest : 9.4061 , 9.4 , 9.07 , 9.007.
From least to greatest :
9.007, 9.07, 9.4, 9.4061.
Jason's data distribution is symmetrical and shows no outliers; Shane's data distribution is uniform and shows no outliers also. Therefore, the correct observation about the data sets that is correct is:<em> Option B.</em>
<h3>Symmetrical and Uniform Data Distribution on a Dot Plot</h3>
- If the data plotted on the dot plot shows a bell shape curve and can be divided into equal halves by a vertical line, the data distribution is symmetrical.
- When the data is spread equally across the range with no clear peaks, the data distribution is uniform.
<h3>What are Outliers?</h3>
Outliers are values that are far from the middle and are entirely different from the rest of the data.
The dot plots for sales made by Jason and Shane are shown in the image attached below.
Jason's data distribution is symmetrical and shows no outliers; Shane's data distribution is uniform and shows no outliers also. Therefore, the correct observation about the data sets that is correct is:<em> Option B.</em>
Learn more about data distribution on:
brainly.com/question/24309209