Answer:
Step-by-step explanation:
You have to multiply 8 times 12 and that is 96
You could say one person is at 1:5 and say they moved up and up
To prove this inequality we need to consider three cases. We need to see that the equation is symmetric and that switching the variables x and y does not change the equation.
Case 1: x >= 1, y >= 1
It is obvious that
x^y >= 1, y^x >= 1
x^y + y^x >= 2 > 1
x^y + y^x > 1
Case 2: x >= 1, 0 < y < 1
Considering the following sub-cases:
- x = 1, x^y = 1
- x > 1,
Let x = 1 + n, where n > 0
x^y = (1 + n)^y = f_n(y)
By Taylor Expansion of f_e(y) around y = 0,
x^y = f_n(0) + f_n'(0)/1!*y + f_n''(0)/2!*y^2 + ...
= 1 + ln(1 + n)/1!*y + ln(1 + n)^2/2!*y^2 + ...
Since ln(1 + n) > 0,
x^y > 1
Thus, we can say that x^y >= 1, and since y^x > 0.
x^y + y^x > 1
By symmetry, 0 < x < 1, y >= 1, also yields the same.
Case 3: 0 < x, y < 1
We can prove this case by fixing one variable at a time and by invoking symmetry to prove the relation.
Fixing the variable y, we can set the expression as a function,
f(x) = x^y + y^x
f'(x) = y*x^(y-1) + y^x*ln y
For all x > 0 and y > 0, it is obvious that
f'(x) > 0.
Hence, the function f(x) is increasing and hence the function f(x) would be at its minimum when x -> 0+ (this means close to zero but always greater than zero).
lim x->0+ f(x) = 0^y + y^0 = 0 + 1 = 1
Thus, this tells us that
f(x) > 1.
Fixing variable y, by symmetry also yields the same result: f(x) > 1.
Hence, when x and y are varying, f(x) > 1 must also hold true.
Thus, x^y + y^x > 1.
We have exhausted all the possible cases and shown that the relation holds true for all cases. Therefore,
<span> x^y + y^x > 1
----------------------------------------------------
I have to give credit to my colleague, Mikhael Glen Lataza for the wonderful solution.
I hope it has come to your help.
</span>
Answer:
Option 1
Step-by-step explanation:
12x²+2x-4
2(6x²+x-2)
2(6x²+4x-3x-2)
2(2x(3x+2)-1(3x+2))
2(3x+2)(2x-1)
Answer:
"Element of a Set"
Step-by-step explanation:
For example, the statement x∈A means that x is an element of the set A. In other words, x is one of the objects in the collection of (possibly many) objects in the set A.