I'll assume the ODE is

Solve the homogeneous ODE,

The characteristic equation

has roots at
and
. Then the characteristic solution is

For nonhomogeneous ODE (1),

consider the ansatz particular solution

Substituting this into (1) gives

For the nonhomogeneous ODE (2),

take the ansatz

Substitute (2) into the ODE to get

Lastly, for the nonhomogeneous ODE (3)

take the ansatz

and solve for
.

Then the general solution to the ODE is

Answer: C
Step-by-step explanation: Divide the mass value by 35.274
Answer
The line of symmetry x = -4
Step by step explanation
Here we have to use the formula.
The symmetry of a parabola x = -b/2a
Now compare the given equation y = 3x^2 + 24x -1 with the general form y = ax^2 + bx + c and identify the value of "a" and "b"
Here a = 3 and b = 24. Now plug in these values in to the formula to find the line of symmetry.
x = -24/ 2(3)
x = -24/6
x = -4
Therefore, the line of symmetry x = -4.
Thank you.