hope it helps ..............
Answer: -
Acetic acid
Explanation: -
The intermolecular force of attraction depends on the strength or extent of Hydrogen bonding present in a substance.
Benzene and chloroform does not have hydrogen bonding being non polar molecule.
Water has hydrogen bonding being polar.
However acetic acid being most polar has the maximum hydrogen bonding.
Thus acetic acid has the strongest intermolecular forces of attraction.
setup 1 : to the right
setup 2 : equilibrium
setup 3 : to the left
<h3>Further explanation</h3>
The reaction quotient (Q) : determine a reaction has reached equilibrium
For reaction :
aA+bB⇔cC+dD
![\tt Q=\dfrac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Comparing Q with K( the equilibrium constant) :
K is the product of ions in an equilibrium saturated state
Q is the product of the ion ions from the reacting substance
Q <K = solution has not occurred precipitation, the ratio of the products to reactants is less than the ratio at equilibrium. The reaction moved to the right (products)
Q = Ksp = saturated solution, exactly the precipitate will occur, the system at equilibrium
Q> K = sediment solution, the ratio of the products to reactants is greater than the ratio at equilibrium. The reaction moved to the left (reactants)
Keq = 6.16 x 10⁻³
Q for reaction N₂O₄(0) ⇒ 2NO₂(g)
![\tt Q=\dfrac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
Setup 1 :

Q<K⇒The reaction moved to the right (products)
Setup 2 :

Q=K⇒the system at equilibrium
Setup 3 :

Q>K⇒The reaction moved to the left (reactants)
Answer:
mass gives the mass of atoms while molecular weight gives the mass of molecules
Answer:
It is higher.
Explanation:
The amplitude of a wave that carries more energy is usually higher.
The energy carried by a wave is related to the amplitude in such a manner that it is proportional to the square amplitude.
Amplitude is the maximum vertical displacement of a wave moving along its path.
- Energy of wave and its amplitude are directly proportional to one another.
- If the energy of wave is doubled, the amplitude is quadrupled.
- So, the higher the energy of a wave, the more its amplitude.