Answer:
The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3
Explanation:
To get the molar concentration of a solution we will use the formula:
<em>Molar concentration = mass of HCl/ molar mass of HCl</em>
<em></em>
Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.
We can extract the mass of the solution from its density which is 1.2g/mL
We will further perform our analysis by considering only 1 ml of this aqueous solution.
The mass of the substance present in this solution is 1.2g.
<em>The mass of HCl Present is 40% of 1.2 = 0.48 g.</em>
The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol
Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3
Each water molecule consists of two atoms of the element hydrogen joined to one atom of the element oxygen. An interesting property of water is the ability of its molecules to “stick together.” This occurs because one side of each water molecule is slightly negative and the other side is slightly positive. The positive portion of a water molecule is attracted to the negative portion of an adjacent water molecule. As a result, water molecules are called polar molecules. They attract other water molecules like little magnets. It is most likely ionic bonding but between hydrogen and oxygen it is covalent.
<span />
O: 1*2 = 2*1
<span>H 2 + 2 = 2*2 </span>
<span>answer C hope you get it right</span>
Explanation:
1mm = 1/10 cm
5.43 x 10^-6 mm = 5.43 × 10^-7 cm