Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.
Answer:
See explaination
Explanation:
The electrons geometry shows the special distribution of the electrons around of the central atom of the molecule.
The molecular geometry shows the special distribution of the atoms that form the molecule.
Please kindly check attachment for further solution.
The concentration of diluted solution is 0.16 M
<u>Explanation:</u>
As, the number of moles of diluted solution and concentrated solution will be same.
So, the equation used to calculate concentration will be:

where,
are the molarity and volume of the concentrated HCl solution
are the molarity and volume of diluted HCl solution
We are given:

Putting values in above equation, we get:

Hence, the concentration of diluted solution is 0.16 M
Answer:
CO₃²⁻(aq) + 2H⁺(aq) → CO₂ (g) + H₂O (l)
Explanation:
The balanced reaction between Na2CO3 and HCl is given as;
Na₂CO₃ (aq) + 2 HCl (aq) → 2 NaCl (aq) + CO₂ (g) + H₂O (l)
The next step is o express the species as ions.
The complete ionic equation for the above reaction would be;
2Na⁺(aq) + CO₃²⁻(aq) + 2H⁺(aq) + 2Cl⁻(aq) → Na⁺(aq) + Cl⁻(aq) + CO₂ (g) + H₂O (l)
The next step is to cancel out the spectator ion ions; that is the ions that appear in both the reactant and product side unchanged.
The spectator ions are; Na⁺ and Cl⁻
The net ionic equation is given as;
CO₃²⁻(aq) + 2H⁺(aq) → CO₂ (g) + H₂O (l)