F=ma, so 100=m×10. Solve for m by dividing by 10. The mass is 10 kg.
Answer:
P = 15.90 W
Explanation:
given,
speed of conveyor belt = 0.56 m/s
conveyor belt move up to = 2 m
angle made with the horizontal = 15°
mass of the box = 2.1 kg
rate is the force of the conveyor belt doing work on the box as the box moves up
P = F v cos ∅
P = 3 × 9.8 × 0.56 × cos 15°
P = 15.90 W
To solve this problem it is necessary to apply the concepts related to the frequency in a spring, the conservation of energy and the total mechanical energy in the body (kinetic or potential as the case may be)
PART A) By definition the frequency in a spring is given by the equation

Where,
m = mass
k = spring constant
Our values are,
k=1700N/m
m=5.3 kg
Replacing,


PART B) To solve this section it is necessary to apply the concepts related to the conservation of energy both potential (simple harmonic) and kinetic in the spring.

Where,
k = Spring constant
m = mass
y = Vertical compression
v = Velocity
This expression is equivalent to,

Our values are given as,
k=1700 N/m
V=1.70 m/s
y=0.045m
m=5.3 kg
Replacing we have,

Solving for A,



PART C) Finally, the total mechanical energy is given by the equation



Through which one of the following mediums is the velocity of a sound wave the greatest?
PennFoster says:
C. Steel