It would definitely be 40,000 <span>kg • m/s because if you double either the mass or velocity and the other stays the same, the momentum will double no matter what.</span>
Answer:
M=125 kg
v=1.75 m/s
Explanation:
From the law of linear momentum
P =mv
Case 1 50*V =M* 0.7 equation 1
50*V =(M+50)* 0.5 equation 2
equating 1 and 2
M* 0.7=(m+50)* 0.5
0.2 M= 25
M=125 kg
Putting value of M in equation 1
50*V =125*0.7
V=1.75 m/s
Answer:
Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
v2f=v2i−2⋅a⋅d
Isolate d on one side of the equation and solve by plugging your values
d=v2i−v2f2a
d=(15.02−10.02)m2s−22⋅2.0ms−2
d=31.3 m
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
vf=vi−a⋅t, which will get you
t=vi−vfa
t=(15.0−10.0)ms2.0ms2=2.5 s
Air pressure is the wi get of air molecules pressing down on the earth. The pressure of the air molecules changes as you move upward from sea level into the atmosphere, the highest pressure is at sea level where the density of the air molecules is the greatest.