Answer:
Question #1- Scientists agree to a standard way of reporting measured quantities in which the number of reported digits reflects the precision in the measurement- more digits, more precision; less digits, less precision. You just studied 14 terms!
Question #2- Units are important because without proper measurement and units to express them, we can never express physical laws precisely just from qualitative reasoning. Units are incredibly important to physics. Two of the most important reasons are the following: (1) they help us. to avoid making mistakes in computation, and (2) they serve as a check on computations once they are completed. In the first case, you can avoid adding 3m and 25cm and coming up with the wrong answer.
Explanation: Hope this helps please mark brainliest!
Elements of art are stylistic features that are included within an art piece to help the artist communicate. The seven most common elements include line, shape, texture, form, space, colour and value, with the additions of mark making, and materiality.
You would create a darker value if you shaded it, shading it makes it darker.
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
Answer:
B. space quantization.
Explanation:
In 1921, Otto Stern developed the idea behind this experiment, while Walther Gerlach performed the actual experiment in 1922. The Ster-Gerlach experiment provides prove to the fact that the spatial orientation of angular momentum is quantized. To demonstrate the experiment, silver atoms were made to travel through a magnetic field path.
Before they hit the screen(usually a glass slide), they were deflected because of their non-zero magnetic moment. There was an expected result for this experiment, but the actual observation on the glass slide was a continuous distribution of the silver atoms that actually hit the glass. This experiment was useful in proving that in all atomic-scale systems, there was a quantization of angular momentum.
The work performed on an object is the force multiplied by the distance it is moved, provided the movement is parallel to the force. Since that is the case here, we can get the work by W=Fd=1900N x 0.23m = 437J. This energy is used to split the wood.