Answer:
low, low
Explanation:
Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies.
Large amplitude waves contain more energy. The other is frequency, which is the number of waves that pass by each second. If more waves( or more wiggly lines) pass by, more energy is transferred each second
Answer:
6) False
7) True
8) False
9) False
10) False
11) True
12) True
13) True
14) True
Explanation:
The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.
When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.
The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.
Answer:
Both eggs are identical. The aim is to find out the highest floor from which an egg will not break when dropped out of a window from that floor. If an egg is dropped and does not break, it is undamaged and can be dropped again. However, once an egg is broken, that's it for that egg.
“a point at which rays of light, heat, or other radiation meet after being refracted or reflected.” Meaning multiple light rays or heat (and other forms of radiation) are all being refracted or reflecting to a certain point