Answer:
8.75
Explanation:
First, find the force of friction.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.9 m/s)² = F (1.4 m)
F = 11.7 N
Next, find the distance at the new velocity.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.5 × 2.9 m/s)² = (11.7 N) d
d = 8.75 m
Answer : The angle between the string and the horizontal is 30 degrees
Explanation: Imagine this a a triangle where the length of the string (200m) is the hypotenuse and the height of the kite is the opposite side (100m) .
Let the angle between the string and the horizontal be theta.
Now sin (Theta) = opposite side/hypotenuse
= 100/200 = 1/2
Therefore Theta = Sin ⁻¹ ( 1/2 )
Theta = 30 degrees
Let's use Newton's 2nd law of motion:
Force = (mass) x (acceleration)
Force = (68 kg) x (1.2 m/s²) = 81.6 newtons .
The period of the oscillations.T = 1.2042s
Opposition is the process of any quantity or measure fluctuating repeatedly about its equilibrium value throughout time. This process is referred to as oscillation. Oscillation, a periodic fluctuation of a substance, can also be described as alternating between two values or rotating around a central value.
Typically, the mathematical formula for the moment of inertia is
T = 2 π √(I / mgd)
Therefore, a moment of inertia
I = 9.00×10-3 + md^2 ;
I=9.00*10^{-3}+ 0.5 * 0.3^2
I=0.054
T=2
T=1.2042s
The period of the oscillations.T = 1.2042s
Read more about the period of the oscillations. brainly.com/question/14394641
#SPJ1
The period of the wave would be halved