Answer:
Range= (0,∞) and (-∞,0)
Step-by-step explanation:
Theres no real process to finding this out you just look at what type of function you have, your graph and your asymptote. We can see that the parts above the asymptote go up and towards ∞ and the part below goes down to -∞ but they can not cross 0
<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>
Answer:
when it ur first question and u make it hard
Step-by-step explanation:
Make it easy btw this is your teacher
Answer:
-3x+6
Step-by-step explanation: