Chemical reaction is a process in which one set of chemical substances (reactants) is converted into another (products). It involves making and breaking chemical bonds and the rearrangement of atoms. Chemical reactions are represented by balanced chemical equations, with chemical formulas symbolizing reactants and products. For specific chemical reactants, two questions may be posed about a possible chemical reaction. First, will a reaction occur? Second, what are the possible products if a reaction occurs? This
Answer:
To have the electronic configuration equal to 1s²2s²2p⁶3s²3p⁶4s²3d⁷, the chemical element must have an electrical charge equal to 27, that is, it must have 27 electrons, such as Cobalt (Co), for example.
Explanation:
The electronic configuration shown in the question above is known as the Linus Pauling distribution and represents the energy sub-levels that an electrically charged atom can have in relation to the amount of electrons it has.
The layers sub-levels are presented in the following order 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹º 4p⁶ 5s² 4d¹º 5p⁶ 6s² 4f14 5d¹º 6p⁶ 7s² 5f14 6d¹º 7p⁶. Where the small numbers represent the number of electrons in each sub-level and the large numbers represent the layers of electronic distribution.
Accordingly, we can see that an atom that has the configuration 1s²2s²2p⁶3s²3p⁶4s²3d⁷ has 27 electrons, like Cobalt.
1 cent ----------> 0.01 g
52 cent ---------> g
g = 52 * 0.01
answer 0.52 g
hope this helps!.
Answer:
4.81×10¹⁰ atoms.
Explanation:
We'll begin by converting 3.2 pg to Ca to grams (g). This can be obtained as follow:
1 pg = 1×10¯¹² g
Therefore,
3.2 pg = 3.2 pg × 1×10¯¹² g / 1 pg
3.2 pg = 3.2×10¯¹² g
Therefore, 3.2 pg is equivalent to 3.2×10¯¹² g
Next, we shall determine the number of mole in 3.2×10¯¹² g of Ca. This can be obtained as follow:
Mass of Ca = 3.2×10¯¹² g
Molar mass of Ca = 40.08 g/mol
Mole of ca=.?
Mole = mass /molar mass
Mole of Ca = 3.2×10¯¹² / 40.08
Mole of Ca = 7.98×10¯¹⁴ mole.
Finally, we shall determine the number of atoms present in 7.98×10¯¹⁴ mole of Ca. This can be obtained as illustrated below:
From Avogadro's hypothesis,
1 mole of Ca contains 6.02×10²³ atoms.
Therefore, 7.98×10¯¹⁴ mole of Ca will contain = 7.98×10¯¹⁴ × 6.02×10²³ = 4.81×10¹⁰ atoms.
Therefore, 3.2 pg of Ca contains 4.81×10¹⁰ atoms.