I think it’s D, I could be wrong though
Answer : The molarity of calcium ion on the original solution is, 0.131 M
Explanation :
The balanced chemical reaction is:

When calcium nitrate react with potassium carbonate to give calcium carbonate as a precipitate and potassium nitrate.
First we have to calculate the moles of 

Given:
Mass of
= 0.524 g
Molar mass of
= 100 g/mol

Now we have to calculate the concentration of 

Now we have to calculate the concentration of calcium ion.
As, calcium carbonate dissociate to give calcium ion and carbonate ion.

So,
Concentration of calcium ion = Concentration of
= 0.131 M
Thus, the concentration or molarity of calcium ion on the original solution is, 0.131 M
Answer:
Phase C - Liquid State
Phase E - Gaseous State
Explanation:
Usually, in phases of water, we have the following;
When temperature is less than zero, it is said to be in its solid phase as ice.
When temperature is between 0 to 100, we can say it is in the liquid phase as water.
When temperature is above 100°C, It is said to be in the gaseous phase as vapour.
From the diagram;
Phase C is the only liquid state because it falls between temperature of 0°C and 100°
Also, only phase E is in the gaseous phase because the temperature is above 100°C.
Explanation:
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside [crystal]s. Water is often incorporated in the formation of crystals from aqueous solutions. ... Water of crystallization can generally be removed by heating a sample but the crystalline properties are often lost
Answer: 2.7 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of sodium hydrogen carbonate = 3.4 g
mass of acetic acid = 10.9 g
Mass of reactants = mass of sodium hydrogen carbonate+ mass of acetic acid = 3.4 + 10.9= 14.3 g
Mass of reactants = Mass of products in reaction vessel + mass of carbon dioxide (as it escapes)
Mass of carbon dioxide = 14.3 - 11.6 =2.7 g
Thus the mass of carbon dioxide released during the reaction is 2.7 grams.