Answer:
steps below
Step-by-step explanation:
x⁶ - 7x³ - 8 = (x⁶ + x³) - (8x³ + 8)
= x³ (x³+1)-8(x³+1)
= (x³ - 2³)(x³ + 1)
= (x-2)(x²+2x+4)(x+1)(x²-x+1)
(x-2)(x²+2x+4)(x+1)(x²-x+1) = 0
<u>x= -1 or x = 2</u> ... roots
or x²+2x+4=0 or x²-x+1=0
x²+2x+4=0
x = (-2±√4-16)/2 = <u>-1 ± √3 i</u> ... complex roots
x²-x+1=0
x = (1±√1-4)/2 = <u>1/2 ± (√3)i / 2</u> ... complex roots
<u />
b) P(x) = x⁶ - 7x³ - 8
= <u>(x-2)(x²+2x+4)(x+1)(x²-x+1)</u>
= (x+1)(x-2)(x-(-1 + √3 i))(x-(-1 - √3 i)(x-(1/2 + (√3)i / 2))(x-(1/2 - (√3)i / 2))
Answer:
31.3
Step-by-step explanation:
Order of Operations, Division goes first, then Addition.
19.4/2 = 9.7
20.6 + 9.7 = 31.3
8/3 (plz give me brainliest)
Answer:
U (2,-1)
Step-by-step explanation:
if you replace x to 2, your answer will come out to be -1
<span><span><span>-2<span>40x<span>^3 -</span></span></span> 8<span>64x<span>^2 </span></span></span>+ 394x<span> +</span></span> 8<span>
Hope this helps
</span>