To take out terms outside the radical we need to divide the power of the term by the index of the radical; the quotient will be the power of the term outside the radical, and the remainder will be the power of the term inside the radical.
First, lets factor 8:
Now we can divide the power of the term, 3, by the index of the radical 2:
![\frac{3}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7B2%7D%20)
= 1 with a remainder of 1
Next, lets do the same for our second term
![x^{7}](https://tex.z-dn.net/?f=%20x%5E%7B7%7D%20)
:
![\frac{7}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%7D%7B2%7D%20)
= 3 with a remainder of 1
Again, lets do the same for our third term
![y^{8}](https://tex.z-dn.net/?f=y%5E%7B8%7D%20)
:
![\frac{8}{2} =4](https://tex.z-dn.net/?f=%20%5Cfrac%7B8%7D%7B2%7D%20%3D4)
with no remainder, so this term will come out completely.
Finally, lets take our terms out of the radical:
![\sqrt{8x^{7} y^{8} }= \sqrt{ 2^{3} x^{7} y^{8} } =2 x^{3} y^{4} \sqrt{2x}](https://tex.z-dn.net/?f=%20%20%5Csqrt%7B8x%5E%7B7%7D%20y%5E%7B8%7D%20%20%7D%3D%20%5Csqrt%7B%202%5E%7B3%7D%20x%5E%7B7%7D%20y%5E%7B8%7D%20%20%20%7D%20%20%3D2%20x%5E%7B3%7D%20%20y%5E%7B4%7D%20%20%5Csqrt%7B2x%7D%20)
We can conclude that the correct answer is the third one.