Answer:
BA = 25π,
LA = 25√2π,
TA = 25π + 25√2π,
V = 41 and 2 / 3π
Step-by-step explanation:
We need to determine the height here, as it is not given, and is quite important to us. The height is a perpendicular line segment to the radius, hence forming a 45 - 45 - 90 degree triangle as you can see. Therefore, by " Converse to Base Angles Theorem " the height should be equal in length to the radius,
( Height = 5 inches = Radius
______
Now knowing the height, let's begin by calculating the base area. By it's name, we have to find the area of the base. As it is a circle, let us apply the formula " πr^2 "
- Base Area = 25π
______
The lateral area is simply the surface area excluding the base area, the surface area having a formula of " πr^2 + πrl. " Thus, the lateral area can be calculated through the formula " πrl, " but as we are not given the slant height ( l ) we have to use another formula,
-
- Lateral Area = 25√2π
______
And the surface area is the base area + lateral area -
- Surface Area
______
The volume of a cone is 1 / 3rd that of a cylinder, with a simple formula of Base * height. Therefore, we can conclude the following -
- Volume = 41 and 2 / 3π
If you didn't change the slope of the line, but you moved it
down 6 units on the graph, then its y-intercept would become
6 less. The equation of the new line would be ...
y = 1/3 x - 16 .
Answer:
DWAFECGSAD
Step-by-step explanation:
EWAFGSEE
Answer:
The answer is <em>1</em>.
Step-by-step explanation:
Given the expression:

To find:
The expression without absolute value.
Solution:
First of all, let us learn about the absolute value function:

i.e. value is x if x is positive
value is -x if x is negative
Here the given expression contains two absolute value functions:
and 
Using the definition of absolute value function as per above definition.


Now, it is given that z < 5 that means z will also be lesser than 6 i.e. z < 6
So, given expression
will be equivalent to :

So, the expression is equivalent to <em>1</em>.
These array of numbers shown above are called matrices. These are rectangular arrays of number that are arranged in columns and rows. It is mostly useful in solving a system of linear equations. For example, you have these equations
x+3y=5
2x+y=1
x+y=10
In matrix form that would be
![\left[\begin{array}{ccc}1&3&5\\2&1&1\\1&1&10\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%265%5C%5C2%261%261%5C%5C1%261%2610%5Cend%7Barray%7D%5Cright%5D%20)
where the first column are the coefficients of x, the second column the coefficients of y and the third column is the constants, When you multiple matrices, just multiply the same number on the same column number and the same row number. For this problem, the solution is