<em>"A concave lens is thinner at the center than it is at the edges."</em>
If this isn't on the list of choices, that's tough. We can't help you choose the best one if we don't know what any of them is.
Explanation:
The given data is as follows.
m = 5000 kg, h = 800 km = 
, r = R + h = 
kg, G = 
As we know that,

v = 
And, it is known that formula to calculate angular velocity is as follows.

v = 
= 
= 
Thus, we can conclude that speed of the satellite is
.
Strong alien you got there good luck bud you never asked a question
We might have a trouble viewing the general part of galaxy because : the Milky Way's center is so brilliant and filled with stars, it has been particularly challenging for astronomers to examine it because it is impossible to distinguish individual stars and clusters.
<h3>What is a Milky Way ?</h3>
There are many stars, grains of dust, and gas in the Milky Way. It is known as a spiral galaxy because, from the top or bottom, it would appear to be whirling like a pinwheel. About 25,000 light-years from the galaxy's nucleus, the Sun is situated on one of the spiral arms.
The Milky Way galaxy is made up of billions of stars, as well as gas and dust, which are all drawn to one another by gravitational pull, as well as a significant amount of dark matter. Our galaxy is approximately 100,000 light years [e1] across.
To know more about milky way galaxy you may visit the link :
brainly.com/question/2905713
#SPJ4
Answer:
7.5 km/h (2.1 m/s) due east
Explanation:
The average velocity of the person is given by:

where
d is the displacement
t is the time taken
In this problem,
d = 15 km is the displacement
t = 2.0 h is the time elapsed
so the average velocity is

and the direction is the same as the displacement (east).
We can also convert the velocity into SI units (m/s). We have:
d = 15 km = 15,000 m
t = 2.0 h * 3600 s/h = 7200 s
