Sound—energy<span> we can hear—travels only so far before it soaks away into the world around us. Until electrical </span>microphones<span>were invented in the late 19th century, there was no satisfactory way to send </span>sounds<span> to other places. You could shout, but that carried your words only a little further. You couldn't shout in New York City and make yourself heard in London. And you couldn't speak in 1715 and have someone listen to what you said a hundred years later! Remarkably, such things are possible today: by converting sound energy into electricity and information we can store, microphones make it possible to send the sounds of our voices, our music, and the noises in our world to other places and other times. How do microphones work? Let's take a closer look!</span>
The answer of this question is D. All of the above
Acceleration happen when an obeject change its velocity. It has nothing to do with speed.
The huge misconception about acceleration is when we thought it only aply if we increase our speed ( in a sport match, sportcaster often describe acceleration as an increase in players speed)
slower, faster, right , left, it does not matter, as long as that object change its velocity, it accelerates
Answer:
The Role of Heat Transfer Methods in the Distribution of Earth's Energy
Explanation:
Tangential acceleration of a point on the rim of the flywheel during this spin-up process is 0.2548 m/s².
Tangential acceleration is defined as the rate of change of tangential velocity of the matter in the circular path.
Given,
Radius of flywheel (r) = 1.96 cm = 0.0196m
Angular acceleration (α)= 13.0 rad/s²
The tangential acceleration formula is at=rα
where, α is the angular acceleration, and r is the radius of the circle.
using the formula; at=rα = (13.0 rad/s²) (0.0196m) = 0.2548 m/s².
The tangential acceleration is 0.2548 m/s².
Learn more about the Tangential acceleration with the help of the following link:
brainly.com/question/15743294
#SPJ4