Answer:
200 mL
Explanation:
Given that,
Initial volume, V₁ = 300 mL
Initial pressure, P₁ = 0.5 kPa
Final pressure, P₂ = 0.75 kPa
We need to find the final volume of the sample if pressure is increased at constant temperature. It is based on Boyle's law. Its mathematical form is given by :

V₂ is the final volume

So, the final volume of the sample is 200 mL.
Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
Answer:
Gravity is the only force acting on a falling ball because of free fall. Since gravity is unbalanced it accelerates an object and the velocity increases as an object falls due to gravity pushing it. The acceleration due to gravity is 9.8 m/s^2.
The total capacitance is <em>C</em> such that
1/<em>C</em> = 1/(5.0 µF) + 1/(14 µF) + 1/(21 µF)
Solve for <em>C</em> :
<em>C</em> = 1 / (1/(5.0 µF) + 1/(14 µF) + 1/(21 µF)) ≈ 3.1 µF
A warm up plan . Hope that helps