Answer:
Total mass of combination = 2+3+5 = 10kg.
Acceleration produced = 2m/s^2
hence force =( total mass × acceleration)= (2×10)= 20 N.
Net force on 3kg block = acceleration × mass = (2 × 2 )= 4 N
applied force on 2 kg block = 20N
Force between 2 kg and 3 kg block = (20-4) = 16N. ans
Net force on 3 kg block = 3 × 2 =6N.
Applied force on 3 kg block due to 2 kg block = 16N.
hence, force between 3 kg and 5 kg block = (16-6) = 10N .
answers:-
(a) 20 N
(b) 16N
(c) 10 N
<span>4) Formation of a gas
When methane burns, it produces the gases water vapor and carbon dioxide.
</span><span />
Answer:0.253Joules
Explanation:
First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.
F = ke where;
F is the force
k is spring constant = 34N/m
e is the extension = 0.12m
F = 34× 0.12 = 4.08N
To get work done,
Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.
Work done = Force × Distance
Since F = 4.08m, distance = 0.062m
Work done = 4.08 × 0.062
Work done = 0.253Joules
Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules
Answer:
<em>The current is 1 A</em>
Explanation:
<u>Current in a Series Connection
</u>
When two or more elements are connected in series, all of them have the same current, and the sum of their individual voltages is the total voltage applied to the circuit.
According to Ohm's law:
V=R.I
Where V is the voltage, R is the resistance and I is the current of a circuit.
We have a voltage of V=1.5 V + 1.5 V = 3 V and a resistance of R=3 ohms.
We can calculate the current by solving for I:

The current is 1 A