The graph located in the upper right corner of the image attached shows the graph of y = 3[x]+1.
In order to solve this problem we have to evaluate the function y = 3[x] + 1 with a group of values.
With x = { -3, -2, -1, 0, 1, 2, 3}:
x = -3
y = 3[-3] + 1 = -9 + 1
y = -8
x = -2
y = 3[-2] + 1 = -6 + 1
y = -5
x = -1
y = 3[-1] + 1 = -3 + 1
y = -2
x = 0
y = 3[0] + 1 = 0 + 1
y = 1
x = 1
y = 3[1] + 1 = 3 + 1
y = 4
x = 2
y = 3[2] + 1 = 6 + 1
y = 7
x = 3
y = 3[3] + 1 = 9 + 1
y = 10
x y
-3 -8
-2 -5
-1 -2
0 1
1 4
2 7
3 10
The graph that shows the function y = 3[x] + 1 is the one located in the upper right corner of the image attached.
Answer:
6m + n + 2
Step-by-step explanation:
[7m + 3n - 11 - 2m] + [n + 5 - -m - 3n + 8]
[5m + 3n - 11] + [n + 5 + m - 3n + 8]
5m + 3n - 11 + (-2n + 13 + m)
5m + 3n - 11 - 2n + 13 + m
6m + n + 2
1/2(4y+7)
Use the distributive property. a(b+c)= ab+ac
1/2*4y= 2y
1/2*7= 3.5
2y+3.5 <---- simplified expression
I hope this helps!
~kaikers
Answer:
10-u
Step-by-step explanation: