Answer:
A
Step-by-step explanation:
Given
x - 8 = - 12 ( multiply through by 3 to clear the fraction )
x - 24 = - 36 ( add 24 to both sides )
x = - 12 → A
Answer:24
Step-by-step explanation:
Multiply 3 times ten, 2 times 9, and 6 times 4 and solve you get 24
Answer:x = 56
Step-by-step explanation:
180-(60+64)=56
Answer:
(2, 1)
Step-by-step explanation:
The best way to do this to avoid tedious fractions is to use the addition method (sometimes called the elimination method). We will work to eliminate one of the variables. Since the y values are smaller, let's work to get rid of those. That means we have to have a positive and a negative of the same number so they cancel each other out. We have a 2y and a 3y. The LCM of those numbers is 6, so we will multiply the first equation by a 3 and the second one by a 2. BUT they have to cancel out, so one of those multipliers will have to be negative. I made the 2 negative. Multiplying in the 3 and the -2:
3(-9x + 2y = -16)--> -27x + 6y = -48
-2(19x + 3y = 41)--> -38x - 6y = -82
Now you can see that the 6y and the -6y cancel each other out, leaving us to do the addition of what's left:
-65x = -130 so
x = 2
Now we will go back to either one of the original equations and sub in a 2 for x to solve for y:
19(2) + 3y = 41 so
38 + 3y = 41 and
3y = 3. Therefore,
y = 1
The solution set then is (2, 1)
Given the following table that gives data from a linear function:
![\begin {tabular} {|c|c|c|c|} Temperature, $y = f(x)$ (^\circ C)&0&5&20 \\ [1ex] Temperature, $x$ (^\circ F)&32&41&68 \\ \end {tabular}](https://tex.z-dn.net/?f=%5Cbegin%20%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%0ATemperature%2C%20%24y%20%3D%20f%28x%29%24%20%28%5E%5Ccirc%20C%29%260%265%2620%20%5C%5C%20%5B1ex%5D%0ATemperature%2C%20%24x%24%20%28%5E%5Ccirc%20F%29%2632%2641%2668%20%5C%5C%20%0A%5Cend%20%7Btabular%7D)
The formular for the function can be obtained by choosing two points from the table and using the formular for the equation of a straight line.
Recall that the equation of a straight line is given by

Using the points (32, 0) and (41, 5), we have: