Answer:
d = .076 m
Explanation:
The time for frog A can be calculated from equation of motion

where v_f is final velocity, a is acceleration due to gravity
so from given data we have

t = 0.112 sec
Now we will use that time for frog B


(Note its positive)
For the displacement


d = .076 m
Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet
Explanation:
Since the current flowing through an ideal capacitor is described by equation:

for voltage across the capacitor constant with time the current is:

Open switch has this characteristics (Constant voltage and zero current).
<span><span>Department of Highway Safety and Motor Vehicles OR</span></span>
<span><span /><span><span>Division of Highway Safety and Motor Vehicles </span></span></span>
Answer:
Airplane speed relative to the ground is 260 km/h and θ = 22.6º direction from north to east
Explanation:
This is a problem of vector composition, a very practical method is to decompose the vectors with respect to an xy reference system, perform the sum of each component and then with the Pythagorean theorem and trigonometry find the result.
Let's take the north direction with the Y axis and the east direction as the X axis
Vy = 240 km / h airplane
Vx = 100 Km / h wind
a) See the annex
Analytical calculation of the magnitude of the speed and direction of the aircraft
V² = Vx² + Vy²
V = √ (240² + 100²)
V = 260 km/h
Airplane speed relative to the ground is 260 km/h
Tan θ = Vy / Vx
tan θ = 100/240
θ = 22.6º
Direction from north to eastb
b) What direction should the pilot have so that the resulting northbound
Vo = 240 km/h airplane
Vox = Vo cos θ
Voy = Vo sin θ
Vx = 100 km / h wind
To travel north the speeds the x axis (East) must add zero
Vx -Vox = 0
Vx = Vox = Vo cos θ
100 = 240 cos θ
θ = cos⁻¹ (100/240)
θ = 65.7º
North to West Direction
The speed in that case would be
V² = Vx² + Vy²
To go north we must find Vy
Vy² = V² - Vx²
Vy = √( 240² - 100²)
Vy = 218.2 km / h