Answer:
1. x2 - 9 > 0
x^2-3^2>0
(x+3)(x-3)>0
(x+3)>0 and (x-3)>0
x>-3       and  x>3
2. x2 - 8x + 12 > 0
    x^2 - 8x  +12>0
    x^2 -2x -6x +12 >0   (-8x is replaced by (-2x) + (-6x) )
    x(x-2) -6(x-2) >0
     (x-6)(x-2)>0
(x-6)>0    and (x-2)>0
     x>6     and     x>2
3. -x2 - 12x - 32 > 0
     -x^2 -12x -32 >0
      x^2 +12x +32 <0
       x^2 +4x +8x +32<0
       x(x+4) +8(x+4)<0
       (x+8)(x+4)<0
 (x+8)<0   and  (x+4)<0
x<-8      and    x<-4
4. x2 + 3x - 20 >= 3x + 5
    x^2 +3x -20 >= 3x +5
    x^2 +3x -20 -3x >= 3x +5 -3x
      x^2 -20  >= 5 
      x^2 -20 +20  >= 5  +20
      x^2 >=25
      x^2-25 >=0
       (x-5)(x+5)>=0
 (x-5)>=0  and (x+5)>=0
   x>=5    and x>=-5
 
        
             
        
        
        
1. The segment LO bisects one of the angles of the triangle shown in the figure attached, and divide the segment NM in two segments: NO and OM. Therefore, you must apply the Triangle Angle Bisector Theorem, which is shown below:
 LN/LM=NO/OM
 LN=10
 LM=18
 NO=4
 OM=x (The value you want to find)
 2. When you substitute this values in LN/LM=NO/OM, you have:
 10/18=4/x
 10x=(18)(4)
 x=(18)(4)/10
 x=72/10
 3. Finally, you obtain:
 x=7.2
 The answer is: The value of "x" is 7.2
        
             
        
        
        
D.) Subtracting 9 from each side.