Step-by-step explanation:
<h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em></h2><h2>
<em><u>x </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em><em><u>/</u></em><em><u>3</u></em></h2>
Answer:
The probability that the town has 30 or fewer residents with the illness = 0.00052.
Step-by-step explanation:
So, we have the following set of data or information or parameters given from the question above and they are; the number of people living in that particular society/community/town = 74,000 residents and the proportion of people that the diseases affected = .000215.
The first step to do is to determine the expected number of people with disease. Thus, the expected number of people with disease = 74,000 × .000215 = 15.91.
Hence, the probability that the town has 30 or fewer residents with the illness = 1.23 × 10^-7 × 15.91^30/ 2.65253 × 10^-32 = 0.00052.
Note the formula used in the calculating the probability that the town has 30 or fewer residents with the illness = e^-λ × λ^x/ x!
Multiply 7 x 12 which is 84, 8x2 is 16, 16 divded by 3 is 5, so 5 minutes