1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
3 years ago
15

I sincerly am bad at Math xD. I need help with this

Mathematics
1 answer:
telo118 [61]3 years ago
8 0
I wish I could help but I'm not good in math at all
You might be interested in
Which number is the opposite of the number 2? its -2 right?
Luba_88 [7]
Yes, you are correct, because -2 is 2 spaces away from the number line.
8 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
I need help this is 10 points
Fynjy0 [20]

13. 3(x-6)-8=-2 (you have to plug in x-6 as x in the equation

3x-18-8=-2 (distribute 3)

3x-26=-2 (combine like terms)

3x=24 (subtract 26 to both sides)

x=8 (divide 3 to both sides)

14. -2(3(5y+5)=-4

-2(15y+5)=-4

-30y-10=-4

30y=6

y=1/5

15. (3x-5) +2x = 90

16. Let m be the number of minutes

0.75m+32 = 47

Using this equation you can find the number of minutes.

0.75m = 15 ( subtract 32 to both sides)

m= 20 (divide 0.75 to both sides)

Vera called 20 minutes beyond her allowed minutes.


Here I hope that this helped you out hon :)

3 0
3 years ago
Answer in comments pls!
miv72 [106K]

Answer:

a)

2x/3 = 8. First, multiply both sides by 3 to make 2x = 24. Then, divide both sides by 2: x = 12.

b)

3x/2 = 6. First, multiply both sides by 2 to make 3x = 12. Then, divide both sides by 3: x = 4.

Hope this helps!

8 0
3 years ago
Read 2 more answers
Sreya bought shoes for $37.57 and x pairs of socks for $1.95 each. Which expression shows the total money spent?
Elodia [21]

Answer:

The answer is D

Step-by-step explanation:

the only one that makes sense

8 0
3 years ago
Other questions:
  • For the expression 5-5x to have a negative value, what must be true about the value of x?
    12·1 answer
  • 23= -4m+2+m<br>Explain the steps required to solve this 
    6·2 answers
  • jean needs 1/3 cup of walnuts for each serving of salad she makes she has 2 cups of walnuts how many servings can she make
    9·1 answer
  • PLEASE HELP. ALG 1 EXAM
    12·1 answer
  • Identify the vertex of y = -1 (x-4)^2 +9 and tell whether it’s a minimum or maximum
    12·1 answer
  • The price of a loaf of a particular type of bread increased from $3.69 to $5.49 from 2009 to 2019. What was the percent increase
    10·1 answer
  • Please answer this question and attach a photo of your solution ​
    14·1 answer
  • Please help true or false in the picture below
    5·2 answers
  • Y = -x + 4<br>y = 2x - 8​
    12·1 answer
  • Each license plate in a certain state has five characters (with repeats allowed).
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!