1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sav [38]
3 years ago
6

Sovle number 2 pls and thank you

Mathematics
1 answer:
stepladder [879]3 years ago
3 0

Answer:

\boxed {10,000,000}

Step-by-step explanation:

Solve the following problem:

(-10^{-2})^{-4}

-Calculate -10 to the power of -2:

(-10^{-2})^{-4}

(-\frac{1}{100})^{-4}

-Calculate -\frac{1}{100} to the power of -4:

(-\frac{1}{100})^{-4}

\boxed {10,000,000}

You might be interested in
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n.
Otrada [13]

I guess the "5" is supposed to represent the integral sign?

I=\displaystyle\int_1^4\ln t\,\mathrm dt

With n=10 subintervals, we split up the domain of integration as

[1, 13/10], [13/10, 8/5], [8/5, 19/10], ... , [37/10, 4]

For each rule, it will help to have a sequence that determines the end points of each subinterval. This is easily, since they form arithmetic sequences. Left endpoints are generated according to

\ell_i=1+\dfrac{3(i-1)}{10}

and right endpoints are given by

r_i=1+\dfrac{3i}{10}

where 1\le i\le10.

a. For the trapezoidal rule, we approximate the area under the curve over each subinterval with the area of a trapezoid with "height" equal to the length of each subinterval, \dfrac{4-1}{10}=\dfrac3{10}, and "bases" equal to the values of \ln t at both endpoints of each subinterval. The area of the trapezoid over the i-th subinterval is

\dfrac{\ln\ell_i+\ln r_i}2\dfrac3{10}=\dfrac3{20}\ln(ell_ir_i)

Then the integral is approximately

I\approx\displaystyle\sum_{i=1}^{10}\frac3{20}\ln(\ell_ir_i)\approx\boxed{2.540}

b. For the midpoint rule, we take the rectangle over each subinterval with base length equal to the length of each subinterval and height equal to the value of \ln t at the average of the subinterval's endpoints, \dfrac{\ell_i+r_i}2. The area of the rectangle over the i-th subinterval is then

\ln\left(\dfrac{\ell_i+r_i}2\right)\dfrac3{10}

so the integral is approximately

I\approx\displaystyle\sum_{i=1}^{10}\frac3{10}\ln\left(\dfrac{\ell_i+r_i}2\right)\approx\boxed{2.548}

c. For Simpson's rule, we find a quadratic interpolation of \ln t over each subinterval given by

P(t_i)=\ln\ell_i\dfrac{(t-m_i)(t-r_i)}{(\ell_i-m_i)(\ell_i-r_i)}+\ln m_i\dfrac{(t-\ell_i)(t-r_i)}{(m_i-\ell_i)(m_i-r_i)}+\ln r_i\dfrac{(t-\ell_i)(t-m_i)}{(r_i-\ell_i)(r_i-m_i)}

where m_i is the midpoint of the i-th subinterval,

m_i=\dfrac{\ell_i+r_i}2

Then the integral I is equal to the sum of the integrals of each interpolation over the corresponding i-th subinterval.

I\approx\displaystyle\sum_{i=1}^{10}\int_{\ell_i}^{r_i}P(t_i)\,\mathrm dt

It's easy to show that

\displaystyle\int_{\ell_i}^{r_i}P(t_i)\,\mathrm dt=\frac{r_i-\ell_i}6(\ln\ell_i+4\ln m_i+\ln r_i)

so that the value of the overall integral is approximately

I\approx\displaystyle\sum_{i=1}^{10}\frac{r_i-\ell_i}6(\ln\ell_i+4\ln m_i+\ln r_i)\approx\boxed{2.545}

4 0
3 years ago
On Monday you read 3 pages.
spin [16.1K]

Answer:

27 pages

Step-by-step explanation:

Since you read 3 pages on Monday and you read 3 times that number on Tuesday, the equation should be 3*3 to equal 9. Then, since you read 9 pages on Tuesday and 3 times that number on Wednesday, the equation should be 9*3 to equal 27 pages. So, on Wednesday, you read 27 pages in total.

8 0
3 years ago
Read 2 more answers
Kiara desea contratar el servicio de una línea telefónica con internet para realizar sus clases virtuales. Si el costo de una lí
ArbitrLikvidat [17]

a) Kiara ha adquirido una línea de telefonía móvil con internet a un Coste Fijo de 10 soles y un Tasa de Consumo de 1,5 soles por hora consumida.

b) El Coste total por 48 horas de consumo de la línea telefónica con internet es 82 soles.

a) Nota - Puesto que la ecuación que describe el Coste ya existe en el enunciado, entonces se entiende el verbo <em>"Expresa"</em> como <em>"Describa en sus propias palabras"</em>.

Como puede apreciarse el Coste de la línea telefónica móvil aumenta linealmente con el Tiempo de consumo por parte del usuario. En consecuencia, la función de Coste queda definida como sigue:

C(t) = C_{o} + r\cdot t (1)

Donde:

  • C_{o} - Coste fijo, en soles.
  • r - Tasa de consumo, en soles por hora.

Entonces, tenemos que Kiara ha adquirido una línea de telefonía móvil con internet a un Coste Fijo de 10 soles y un Tasa de Consumo de 1,5 soles por hora consumida.

b) Una característica de las Funciones Lineales es que tanto su Dominio como Rango comprenden al Conjunto de todos los Números Reales, al ser de Pendiente constante esta Función.

Por tanto, el Dominio y el Rango de la Función en cuestión es el Conjunto de todos los Números Reales.

c) Si sabemos que C_{o} = 10, r = 1,5 y t = 48, entonces el Coste Total por concepto de 48 horas de consumo es:

C(48) = 10 + 1,5\cdot (48)

C(48) = 82

El Coste total por 48 horas de consumo de la línea telefónica con internet es 82 soles.

Invitamos a ver este problema sobre Costes: brainly.com/question/15723794

7 0
3 years ago
PLZZ help me asap!! 70points!!
weqwewe [10]

Answer:

1. Given.

2. Opposite Sides OF A Parallelogram Are Congruent.

3. Corresponding Angles Postulate.

4. Substitution

5. ASA Congruence Postulate

6. Definition Of A Parallelogram.

Step-by-step explanation:

7 0
3 years ago
Solve this please!!!
Soloha48 [4]

Answer:

x = 17

Step-by-step explanation:

These angles are supplementary so (2x + 5) + (8x = 5) = 180 then you just do the algebra

Please mark Brainliest :)

5 0
3 years ago
Other questions:
  • Write the first ten terms of a sequence whose first term is -10 and whose common difference is -2.
    5·2 answers
  • Pleaseeeeeeeeeeeeeeeeeeeeee nowwwww
    12·2 answers
  • In an online practice test, Sam got 11 correct answers. However, 3.5 points were deducted for incorrect answers. If he scored 18
    11·1 answer
  • I need help this math problem ​
    11·1 answer
  • A square has a side length of 6 inches. It is enlarged and the new side length is 18 inches. What is the scale factor?​
    15·1 answer
  • How many times larger is 22700000 than 925000
    11·2 answers
  • What is the slope of the line graphed on the coordinate plane?​
    13·1 answer
  • 100÷2 [500÷5 {6+(21+7-24)}] can anyone ???? ;(​
    10·2 answers
  • How do I decide if it’s a real solutions or extraneous solutions?
    5·1 answer
  • What is <br> 9 divided by 2113
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!