Answer:
Density, melting point. and magnetic properties
Explanation:
I can think of three ways.
1. Density
The density of Cu₂S is 5.6 g/cm³; that of CuS is 4.76 g/cm³.
It should be possible to distinguish these even with high school equipment.
2. Melting point
Cu₂S melts at 1130 °C (yellowish-red); CuS decomposes at 500 °C (faint red).
A Bunsen burner can easily reach these temperatures.
3. Magnetic properties
You can use a Gouy balance to measure the magnetic susceptibilities.
In Cu₂S the Cu⁺ ion has a d¹⁰ electron configuration, so all the electrons are paired and the solid is diamagnetic.
In CuS the Cu²⁺ ion has a d⁹ electron configuration, so all there is an unpaired electron and the solid is paramagnetic.
A sample of Cu₂S will be repelled by the magnetic field and show a decrease in weight.
A sample of CuS will be attracted by the magnetic field and show an increase in weight.
In the picture below, you can see the sample partially suspended between the poles of an electromagnet.
Atoms
Explanation:
Chemical bonds results from the rearrangement of atoms in a chemical species.
It deals with the various attractive forces joining chemical species togethe.
- When atoms are re-arranged, they form chemical bonds that leads to production of new compounds.
- This is made possible by the exchange or sharing of electrons.
- The driving force for most interatomic bonding is the tendency to have completely filled outer energy levels like the noble gases.
- When atoms are re-arranged in compounds they lead to the production of chemical bonds.
learn more:
Ionic bonds brainly.com/question/6071838
#learnwithBrainly
Exothermic reaction is where there is release of energy during a reaction
The enthalpy of exothermic reaction is negative
The relation between energy of products, reactants and enthalpy of reaction is
Enthalpy of reaction = sum of enthalpy of formation of products - sum of enthalpy of formation of reactants
.
As enthalpy of reaction is negative, it means the enthalpy of products is less than the enthalpy of reactants so answer is
:
In an exothermic reaction the energy of the product is less than the energy of the reactants.
The reaction between mercury (Hg) and sulfur (S) to form HgS is:
Hg + S ------------- HgS
Therefore: 1 mole of Hg reacts with 1 mole of S to form 1 mole of HgS
The given mass of Hg = 246 g
Atomic mass of Hg = 200.59 g/mol
# moles of Hg = 246 g/ 200.59 gmol-1 = 1.226 moles
Based on the reaction stoichiometry,
# moles of S that would react = 1.226 moles
Atomic mass of S = 32 g/mol
Therefore, mass of S = 1.226 moles*32 g/mole = 39.23 g
39.2 g of sulfur would be needed to react completely with 246 g of Hg to produce HgS