Molecular geometry about the left carbon atom in CH₃CO₂CH₃ is tetrahedral.
The geometry around left carbon that is CH₃ is tetrahedral.
As the hybridization around left carbon is sp³ that shows its geometry should be tetrahedral and as there are 4 ligands around carbon and there is no lone pair present so the geometry is tetrahedral. So, the molecular geometry about the left carbon atom in CH₃CO₂CH₃ is tetrahedral.
Key concepts
Density
Mass
Volume
Concentration
Buoyancy
Water
Answer: 2 molecules of ammonia
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for the formation of ammonia is:

According to stoichiometry,
3 molecules of hydrogen combines with 1 molecule of nitrogen to give 2 molecules of ammonia.
Carbon is the only element that can form so many different compounds because each carbon atom can form four chemical bonds to other atoms, and because the carbon atom is just the right, small size to fit in comfortably as parts of very large molecules.
Allergies arise when a foreign material such as pollen, bee venom or pet dander responds to your immune system or a food that in most people does not cause a reaction. Substances known as antibodies are formed by your immune system.