Answer:
False
Explanation:
If I help please mark as brainliest
Sequence for the movement of electrons during the light dependent reaction
Explanation:
1.These reactions occur within specialised membrane discs within the chloroplast called thylakoids and involve three steps: Excitation of photosystems by light energy. Production of ATP via an electron transport chain. Reduction of NADP+ and the photolysis of water.
2.The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b6f, to another transport protein, plastocyanin (Pc), and back to photosystem
3.Light-dependent reaction. In photosynthesis, the light-dependent reaction uses light energy from the sun to split water (photolysis). ... Water, when broken, makes oxygen, hydrogen, and electrons. These electrons move through structures in chloroplasts and by chemiosmosis, make ATP
4.The two products of the light-dependent reactions of photosystem are ATP and NADPH. The movement of high energy electrons releases the free energy that is needed to produce these molecules. The ATP and NADPH are used in the light-independent reactions to make sugar.
The electrons in these bonds carry energy. Within the power plants of the cell (mitochondria), energy is used to add one molecule of inorganic phosphate (P) to a molecule of adenosine diphosphate (ADP). The amount of energy stored is about 7,300 calories for every mole of ATP formed.
Answer:
The correct answer will be option-D
Explanation:
The aerotaxis movement experiment performed by the Theodor W. Engelmann played an important role in understanding the photosynthesis.
The experiment was performed on the <em>Spirogyra </em>filamentous algae which were exposed to a different wavelength of light.
The other aerobic bacteria present in the test tubes started moving and accumulated near the two regions of the <em>Spirogyra</em> where they were exposed to the blue and red light of the VIBGYOR.
The region receiving red and blue light produced more oxygen through photosynthesis which indicated that these two wavelengths of the light are more active for photosynthesis than any other wavelengths.
Thus, option-D is the correct answer.
Answer:
Explanation:
A. False - A symporter system requires that one of the molecules to be transported using passive transport.
B. True - The Na+ will move down the established concentration gradient releasing energy to facilitate movement of sucrose against its concentration gradient. This is known as secondary active transport.
C. False - sucrose moves through ion channels not by diffusion to better control its movement across the membrane.
D. True - Movement of molecules against their concentration gradient thus requiring energy input is known as active transport.
E. False - One of the molecules needs to be moving against its concentration gradient.
F. False - A Uniporter system allows the binding and transport of a single molecule at a time. A symporter allows simultaneous binding and transport of Na+ and sucrose molecules.