Answer:
Step-by-step explanation:
Choose a random fraction less than 1. I will choose 1/4.
1/6 ÷ 1/4 = 1/6 × 4/1 = 4/6 = 2/3
2/3 > 1/6 so this example supports his claim.
Now chose a fraction greater than 1. I will choose 4/3
1/6 ÷ 4/3 = 1/6 * 3/4 = 3/24
3/24 < 1/6 so this contradicts his claim
2 because if you convert the fractions into decimals then divide it that way it will be 2
Answer:
<h2>
![7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
</h2>
Solution,
![7( \sqrt[3]{2x} ) - 3( \sqrt[3]{16x} ) - 3( \sqrt[3]{8x} ) \\ = 7 \sqrt[3]{2x} - 3 \times ( \sqrt[3]{2 \times 2 \times 2 \times 2x} - 3 \times \sqrt[3]{2 \times 2 \times 2x} \\ = 7 \sqrt[3]{2x} - 3 \times (2 \sqrt[3]{2} x) - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 3 \times 2 \times \sqrt[3]{2x} - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%28%20%5Csqrt%5B3%5D%7B2x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B16x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B8x%7D%20%29%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%28%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20-%203%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%282%20%5Csqrt%5B3%5D%7B2%7D%20x%29%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
Hope this helps...
Good luck on your assignment...
Absolute value is alwas positive
so all of them excet the 3rd one are false
|w|=0 has 1 solution
if the last one was |w|=1 then ther would be 2 solutions, -1 and 1
answer is |w|=0
Find the Greatest Common Factor (GCF)
GCF = 2xy
Factor out the GCF. (Write the GCF first. Then, in parentheses, divide each term by the GCF.)
2xy(8x^3y/2xy + -8x^2y/2xy + -30xy/2xy)
Simplify each term in parenthesis
2xy(4x^2 - 4x - 15)
Split the second term in 4x^2 - 4x - 15 into two terms
2xy(4x^2 + 6x - 10x - 15)
Factor out common terms in the first two terms, then in the last two terms;
2xy(2x(2x + 3) -5(2x + 3))
Factor out the common term 2x + 3
<u>= 2xy(2x + 3)(2x - 5)</u>