Facilitated diffusion water from the inside the cell will move to the outside which is called omnisys. shrivel the cell if it's an animal cell. a plant cell won't really shrivel because it completely has a wall cell but the membrane will.
The possible answers are:
A. Variation in length of the amino acid backbone
B. Each protein is encoded by a distinct gene
C. Variations in the type of peptide bond
D. Variations in the glycosidic linkage
E. Variation in tertiary structure
<span>F. Variations in which amino acids are used
The correct answers are A,E and F
There are only 20 amino acids that make all of the proteins in our bodies. However, there are options for protein variation are almost unlimited.
Firstly, you can vary the number of different amino acid that you use to make a protein.
Secondly, you can also vary the length of the amino acid chain.
And thirdly, when an amino acid chain is formed different parts of the chain interact with each other, bonding chemically, forming different 3-dimensional structures of the protein.
All of this contributes to the vast variation in proteins.</span>
Assumptions:
1. Equilibrium has been reached for the allele proportions
2. Absence of <span>evolutionary influences such as </span>mate choice<span>, </span>mutation<span>, </span>selection<span>, </span>genetic drift<span>, </span>gene flow<span> and </span>meiotic drive<span>.
</span>
Defining L=long stem, l=short stem, and L is dominant over l.
f(x) = frequency of allele x (expressed as a fraction of population)
Then the Hardy-Weinberg equilibrium law applies:
p^2+2pq+q^2=1
where
f(LL)=p^2
f(Ll)=2pq
f(ll)=q^2
Given f(ll)=0.35=q^2, we have
q=sqrt(0.35)=0.591608
p=1-q=0.408392
=>
f(Ll)
=2pq
=2*0.408392*0.591608=0.483216
= proportion of heterozygous population
Answer: percentage of heterozygous population is 48.32%
The answer is that Both aid in the expansion and relaxation of lungs. Diaphragm and the rib muscles are vital in the breathing process. During inhalation the intercostal muscles contract, expanding the ribcage, the diaphragm contracts, pulling downwards to increase the volume of the chest, pressure inside the chest is lowered and air is sucked into the lungs. During exhalation the intercostal muscles relax, the ribcage drops inward and downwards, the diaphragm relaxes, moving back upwards, decreasing the volume of the chest, the pressure inside the chest increases and air is forced out.