Answer:
glucose
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration:
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration:
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis:
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation:
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced in this step, however carbon dioxide is released.
Answer:
the conversion factor is f= 6 mol of glucose/ mol of CO2
Explanation:
First we need to balance the equation:
C6H12O6(s) + O2(g) → CO2(g) + H2O(l) (unbalanced)
C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(l) (balanced)
the conversion factor that allows to calculate the number of moles of CO2 based on moles of glucose is:
f = stoichiometric coefficient of CO2 in balanced reaction / stoichiometric coefficient of glucose in balanced reaction
f = 6 moles of CO2 / 1 mol of glucose = 6 mol of glucose/ mol of CO2
f = 6 mol of CO2/ mol of glucose
for example, for 2 moles of glucose the number of moles of CO2 produced are
n CO2 = f * n gluc = 6 moles of CO2/mol of glucose * 2 moles of glucose= 12 moles of CO2
Answer:
Eletrical
Explanation:
The electric transfers 70% of the input energy to kinetic energy 30% is wasted output energy in the form of thermal energy and sound.
Salt water is considered to be a solution
Answer:
See attachment.
Explanation:
Mono-substituted cyclohexanes are more stable with their substituents in an equatorial position. However, with poly-substituted cyclohexanes, the situation is more complex since the steric effects of all substituents have to be taken into account. In this case, you can see that <u>the interconversion is shifted towards the conformation in the bottom because there is less tension between the substituents</u>.