Answer:
The correct answer is A) single
Explanation:
In the case of the Bromo atom, it requires 1 electron to complete its octet, therefore it shares 1 electron with the other Bromo atom.
Answer:
41.54 grams of oxygen are required to burn 13.5 g of acetylene
Explanation:
The balanced reaction is:
2 C₂H₂ + 5 O₂ → 4 CO₂ + 2 H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- C₂H₂: 2 moles
- O₂: 5 moles
- CO₂: 4 moles
- H₂O: 2 moles
Being the molar mass of the compounds:
- C₂H₂: 26 g/mole
- O₂: 32 g/mole
- CO₂: 44 g/mole
- H₂O: 18 g/mole
By reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- C₂H₂: 2 moles* 26 g/mole= 52 grams
- O₂: 5 moles* 32 g/mole= 160 grams
- CO₂: 4 moles* 44 g/mole= 176 grams
- H₂O: 2 moles* 18 g/mole= 36 grams
You can apply the following rule of three: if by stoichiometry 52 grams of acetylene react with 160 grams of oxygen, 13.5 grams of acetylene react with how much mass of oxygen?

mass of oxygen= 41.54 grams
<u><em>41.54 grams of oxygen are required to burn 13.5 g of acetylene</em></u>
<u><em></em></u>
The answer would be mesons.
Hope this image helps you! :)
Answer:
#1- the percentage is 2.77%
#2 - 218.1336g
#3- 7.89%
#4- 63.8489g
#5- 136.1406g
#6- 340.3515g
#7- 2.387238
#8-
Explanation:
Answer:
6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
Concentration is decreased to 1.56 % which means that 0.0156 of
is decomposed. So,
= 0.0156
Thus,
kt = 4.1604
The expression for the half life is:-
Half life = 15.0 hours
Where, k is rate constant
So,

<u>6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.</u>