The missing question is:
<em>What is the percent efficiency of the laser in converting electrical power to light?</em>
The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
A particular laser consumes 130.0 Watt (P) of electrical power. The energy input (Ei) in 1 second (t) is:

The laser produced photons with a wavelength (λ) of 1017 nm. We can calculate the energy (E) of each photon using the Planck-Einstein's relation.

where,

The energy of 1 photon is 6.52 × 10⁻²⁰ J. The energy of 2.67 × 10¹⁹ photons (Energy output = Eo) is:

The percent efficiency of the laser is the ratio of the energy output to the energy input, times 100.

The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
You can learn more about lasers here: brainly.com/question/4869798
Answer:
It has 6 protons and its Carbon 14
Explanation:
The mass of sodium sulphate, Na₂SO₄, required to prepare the solution is 10.65 g
<h3>How to determine the mole of sodium sulphate Na₂SO₄</h3>
- Volume = 250 mL = 250 / 1000 = 0.25 L
- Molarity = 0.3 M
Mole = Molarity x Volume
Mole of Na₂SO₄ = 0.3 × 0.25
Mole of Na₂SO₄ = 0.075 mole
<h3>How to determine the mass of sodium sulphate Na₂SO₄</h3>
- Molar mass of Na₂SO₄ = 142.05 g/mol
- Mole of Na₂SO₄ = 0.075 mole
Mass = mole × molar mass
Mass of Na₂SO₄ = 0.075 × 142.05
Mass of Na₂SO₄ = 10.65 g
Thus, 10.65 g of Na₂SO₄ is needed to prepare the solution.
Learn more about molarity:
brainly.com/question/15370276
A) Z + 4
In the actual atom, half of the nucleus would be protons and the other half neutrons, hence the 2z. The additional four in the expression must be neutrons because adding protons would change the element all together.