The answer would be B) Lower, because pure water freezes at 32 degrees Fahrenheit whereas salt water freezes at 28.4 degrees Fahrenheit. Hopefully this helps!
Answer:
Their electrons are placed in a higher number of orbitals
Explanation:
- Suppose a element be Ga .
The atomic no is 31
The configuration is given by

Or
![\\ \sf\longmapsto [Ar]3d^{10}4s^24p^1](https://tex.z-dn.net/?f=%5C%5C%20%5Csf%5Clongmapsto%20%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E1)
Answer:
K = 4.07x10⁻³
Explanation:
Based on the reaction:
NH₄I(s) ⇄ NH₃(g) + HI(g)
You can define K of equilibrium as the ratio of concentrations of reactants and products, thus:
K = [NH₃] [HI] / [NH₄I]
But, as NH₄I is a solid, is not taken into account in the equilibrium, that means K expression is:
K = [NH₃] [HI]
As the concentrations in equilibrium of the gases is:
[NH₃] = 4.34x10⁻²M
[HI] = 9.39x10⁻²M
Equilibrium constant, K, is:
K = 4.34x10⁻²M * 9.39x10⁻²M
<h3>K = 4.07x10⁻³</h3>
A 3.1 L sample of hydrogen <u>d. contains the same number of molecules</u>
as 3.1 L of carbon dioxide at the same temperature and pressure.
This is the fundamental principle of <em>Avogadro’s hypothesis</em>: equal volume of gases at the same temperature and pressure contain the same number of molecules.
The sample of carbon dioxide has a <em>greater mass</em>, a <em>greater number of atoms</em>, and a <em>greater density</em>, than the sample of hydrogen.
Sodium has 11 protons and Chlorine has 17.